
1. Che cos’è un programma

Ogni programma (o app-licazione) è costituito da tante 
istruzioni scritte una dopo l’altra, definite come algoritmo:

Un algoritmo è un insieme finito di istruzioni che, 
eseguite in sequenza, permettono di elaborare i dati 
in ingresso per ottenere in uscita i risultati richiesti 
dall’elaborazione, in modo da risolvere un 
determinato problema



1. Che cos’è un programma



2. Dal problema al programma

Il processo di 
formalizzazione
Serve a:

▪ focalizzare meglio gli 
obiettivi
▪ definire il modo per 

raggiungerli



2. Dal problema al programma

L’analisi
La prima fase consiste nell’analisi approfondita del 
problema da risolvere



2. Dal problema al programma
Durante la fase dell’analisi, vanno individuati eventuali 
vincoli di integrità, cioè le condizioni che gli input al 
programma devono rispettare per essere accettati come 
validi



2. Dal problema al programma

Lo sviluppo dell’algoritmo
Un algoritmo è un insieme finito di azioni che 
risolvono un determinato problema, trasformando i 
dati di input in dati di output (o risultati) attraverso le 
relazioni esistenti tra input e output

L’algoritmo risolutore ottimale segue criteri di:
▪generalità
▪sintesi



2. Dal problema al programma

La simulazione
La terza fase del processo di formalizzazione consiste nella 
simulazione

▪ si controlla se la sequenza di azioni ricavate è 
funzionante

La codifica
È la traduzione dell’algoritmo in un insieme di istruzioni 
comprensibili all’elaboratore mediante un linguaggio di 
programmazione 

▪ C Language, C++, C#, Python, Java, JavaScript, 
Visual Basic, Scratch



2. Dal problema al programma

Editare il programma
Ogni linguaggio di programmazione offre un proprio 
ambiente di sviluppo chiamato IDE (Integrated 
Development Environment) 
Questo include un editor con cui:

▪ scrivere il codice nel linguaggio di programmazione 
scelto 
▪ salvarlo in memoria ricavando il programma 

sorgente



2. Dal problema al programma



2. Dal problema al programma

Fra i programmi messi a disposizione dall’IDE troviamo:
▪ Il traduttore 
– traduce il programma editato in linguaggio 

macchina per ottenere il programma eseguibile
▪ Il debugger 
– aiuta a individuare e correggere eventuali errori nel 

codice



3. Concetto di variabile

Le variabili sono gli oggetti elaborati dalle istruzioni 
del programma

Esse risiedono nella memoria dell’elaboratore e 
corrispondono a contenitori dei valori che sono 
utilizzati durante l’esecuzione del programma

Alle variabili è associato un nome, detto 
identificatore, che le individua univocamente 
all’interno del programma

Sono chiamate variabili perché a loro viene 
associato un valore che può cambiare durante 
l’esecuzione del programma



3. Concetto di variabile

L’operazione tipica che viene eseguita su una variabile è 
detta assegnazione 

▪ È l’inserimento di un valore nel contenitore associato 
all’identificatore della variabile
▪ Il simbolo utilizzato negli algoritmi per indicare 

l’assegnazione è ←
Oltre alle variabili, le istruzioni di un programma possono 
elaborare oggetti chiamati costanti

▪ Il loro valore, assegnato a inizio programma, non 
cambia mai durante l’esecuzione



3. Concetto di variabile



3. Concetto di variabile



4. Gli schemi di flusso

Per rappresentare graficamente un algoritmo si utilizzano 
gli schemi di flusso, ottenendo una descrizione delle 
azioni più efficace e chiara, standard e senza ambiguità 
interpretative

Uno schema di flusso (o diagramma a blocchi o flow 
chart) è una rappresentazione grafica di un 
algoritmo realizzata mediante l’utilizzo di simboli, la 
cui forma dipende dal tipo di azione che si vuole 
descrivere, uniti da frecce che rappresentano il 
flusso dell’esecuzione delle istruzioni che 
compongono l’algoritmo



4. Gli schemi di flusso



4. Gli schemi di flusso

Gli schemi di composizione fondamentali

Gli schemi di composizione fondamentali (SCF) 
sono schemi di flusso che rappresentano le 
possibili situazioni che si possono incontrare nello 
sviluppo di algoritmi
Essi si distinguono in:
▪SCF di sequenza
▪SCF di selezione
▪SCF di ripetizione



4. Gli schemi di flusso

Lo SCF di sequenza
Rappresenta una serie di 
istruzioni di tipo azione che 
vengono eseguite in 
successione



4. Gli schemi di flusso

Lo SCF di selezione
Rappresenta la situazione 
in cui:

▪ si incontra un blocco 
di controllo
▪ a seconda del 

risultato della 
condizione che 
contiene, si decide se 
proseguire per una 
strada o per un’altra



4. Gli schemi di flusso

Lo SCF di selezione permette di scegliere quali 
azioni dell’algoritmo eseguire a seconda del 
risultato fornitoci da una condizione, spostando il 
flusso dell’esecuzione verso le azioni corrispondenti 
al risultato Vero del test oppure verso le azioni 
corrispondenti al risultato Falso del test

Più SCF di selezione possono essere inseriti uno dentro 
l’altro formando una serie di blocchi di controllo annidati



5. Equivalenza tra algoritmi

Uno degli obiettivi fondamentali della programmazione 
consiste nel trovare l’algoritmo risolutore ottimale
Tuttavia, nella maggior parte dei casi, per un problema 
esistono più algoritmi risolutori equivalenti

Due o più algoritmi si dicono equivalenti se, pur 
usando metodi risolutori diversi, ricevuti gli stessi 
input, forniscono in uscita gli stessi output



5. Equivalenza tra algoritmi

Analizziamo, per esempio, il seguente algoritmo nelle tre 
versioni risolutive equivalenti



5. Equivalenza tra algoritmi



5. Equivalenza tra algoritmi

Gli operatori booleani
Possiamo ottenere lo stesso 
risultato con meno blocchi di 
controllo mediante l’utilizzo 
degli operatori booleani 
AND, OR, NOT
Le tavole di verità ci 
aiutano a capirne il 
funzionamento



5. Equivalenza tra algoritmi



5. Equivalenza tra algoritmi

Introduzione di una 
variabile ausiliaria
Introducendo la 
variabile ausiliaria 
max è possibile 
semplificare le 
condizioni contenute 
nei blocchi di 
controllo


