1. Che cos’e un programma

Ogni programma (o app-licazione) € costituito da tante
istruzioni scritte una dopo l'altra, definite come algoritmo:

Un algoritmo e un insieme finito di istruzioni che,
eseguite in sequenza, permettono di elaborare i dati
in ingresso per ottenere in uscita i risultati richiesti
dall’elaborazione, in modo da risolvere un
determinato problema

1. Che cos’é un programma

2. Dal problema al programma

.
Il processo di
formalizzazione

Serve a- Analisi
= focalizzare meglio gli ¢
obiettivi Sviluppo dell'algoritmo
= definire il modo per ¢
raggiungerli simulazione
\ 4
Codifica

2. Dal problema al programma

L’analisi

La prima fase consiste nell'analisi approfondita del
problema da risolvere

la natura dei dati in ingresso (input)
ed eventuali vincoli di integrita

ARl perrcl;iette la natura dei dati in uscita
' B i (output o risultati)

le relazioni tra i datiin input

e i dati in output (1/0)

2. Dal problema al programma
Durante la fase dell’analisi, vanno individuati eventual
vincoli di integrita, cioe le condizioni che gli input al
programma devono rispettare per essere accettati come

validi

3 caratteri alfabetici
per il cognome.

3 caratteri alfabetici
per il nome.

Data
di scadenza

08/11/202%Z

1 carattere alfabetico
usato come carattere
di controllo.

4 caratteri associati
al Comune o allo Stato
estero di nascita.

2 caratteri numerici
per I'anno di nascita.

1 carattere alfabetico per
il mese di nascita.

2 caratteri numerici per il giorno
di nascita e il sesso.

2. Dal problema al programma

Lo sviluppo dell’algoritmo

Un algoritmo e un insieme finito di azioni che
risolvono un determinato problema, trasformando i
dati di input in dati di output (o risultati) attraverso le
relazioni esistenti tra input e output

L'algoritmo risolutore ottimale segue criteri di:
=generalita
=sintesi

2. Dal problema al programma

La simulazione
La terza fase del processo di formalizzazione consiste nella
simulazione
= si controlla se la sequenza di azioni ricavate €
funzionante
La codifica

E la traduzione dell’algoritmo in un insieme di istruzioni
comprensibili all'elaboratore mediante un linguaggio di
programmazione

= C Language, C++, C#, Python, Java, JavaScript,
Visual Basic, Scratch

2. Dal problema al programma

Editare il programma

Ogni linguaggio di programmazione offre un proprio
ambiente di sviluppo chiamato IDE (/ntegrated
Development Environment)

Questo include un editor con cui:

= scrivere il codice nel linguaggio di programmazione
scelto

= salvarlo in memoria ricavando il programma
sorgente

2. Dal problema al programma

I8 mainc (disegno?] - Code-Blocks 17.12 - 0 X
File Edit View Search Project Build Debug Fortran waSmith Yook Tooke Plugine DoxyBlocks Settings Help
P EHO L3 XRD A8 Or %O 0 vidipEevacvin | IN
 <global> « | man : nt vima|PBb R
i@ rr<|e3Nid e +iD ﬂo-w.f.dh.-% -] - - 3K S('%l v A
[iz 3| prepm
¢ | Projects | Symboks -.: 1 $include <stdio.h>
) Workspace 2
= M doegnot 3 int main()
= & Sources 4 B
e s float a, b, media;
(3
7 printf("Inserisci i due valori separati da uno spazio: "):
8 scanf ("%£f %f",ca, &b);
9 media=(a+b)/2;
10 printf("La media e': %f" ,media);
11 || return 0;
12 1)
i3 -
< >
e p— S B RAS RN TV CIIMIEERSGd B GRS AR ACAS I e e e A e g e EEAGEALEA S 1
51_)__::4:& X hlewchremis X Alxe X O Buildlog x‘_}_uu-q- x! A CopCheckNerass % /) CopCheckiNern s+ messages X' Acxope x| 4V
Checking for existence: C:\Users\Alberto\Desktcp\2R INNdisegnoli\bia\Debug\disegnsl exe 2
Execusing: “Ci\Progzam Tiles (x0€)\CodeBlocke/cb_comsole_zunnez.exe™ "Ci\Usezs \Albezto \Desksop'\28 NN disegnol\bin\Dedug \disegnel exe™ iia C:\Usezs
\Auono\:nu:i\ 28 xlr\a.ﬁn .}
A d

CA\Users\Alberto\ Desktop\ 28 INF\disegnoT\mainc ~ C/C++ | Windows (CReLF) WINDOWS-1252 Line 11, Col 14, Pos 226 Insert Read/Wiite default i

2. Dal problema al programma

Fra i programmi messi a disposizione dall'IDE troviamo:
= || traduttore

— traduce il programma editato in linguaggio
macchina per ottenere il programma eseguibile

= || debugger

— aiuta a individuare e correggere eventuali errori nel
codice

Programma

Programma Programma
sorgente eseguibile

[in un linguaggio [in linguaggio
di programmazione) macchina)

3. Concetto di variabile

Le variabili sono gli oggetti elaborati dalle istruzioni
del programma

Esse risiedono nella memoria dell’elaboratore e
corrispondono a contenitori dei valori che sono
utilizzati durante I’esecuzione del programma

Alle variabili &€ associato un nome, detto
identificatore, che le individua univocamente
all’interno del programma

Sono chiamate variabili perché a loro viene
associato un valore che pué cambiare durante
I’esecuzione del programma

3. Concetto di variabile

L'operazione tipica che viene eseguita su una variabile e
detta assegnazione

= E l'inserimento di un valore nel contenitore associato
all'identificatore della variabile

= |l simbolo utilizzato negli algoritmi per indicare
'assegnazione € «—
Oltre alle variabili, le istruzioni di un programma possono
elaborare oggetti chiamati costanti

= |l loro valore, assegnato a inizio programma, non
cambia mai durante I'esecuzione

3. Concetto di variabile

A inizio esecuzione
| tre contenitori sono vuoti.

—

Exuscs sl

EREs883838

—
=
-

S|

valorel valore2

—

BBs833888

valore3

Dopo l'input dei dati

| tre contenitori contengono i valori in ingresso al programma.

[

58838ES

b

valorel

100 —
03
80—
70

100 —=

valore3

valore2

Dopo il calcolo della media

appena calcolato.

dakel

00
9%
80
70
60
50
40

valore2

valorel

valore3

media

media =

| primi tre contenitori continuano a contenere i valori precedentemente caricati, mentre il contenitore della media contiene il valore

valorel + valore2 + valore3

3

3. Concetto di variabile

Dperazioni di assegnazione

Risultato

Commento

Assegnazione

Assegnare unvalore a: Dopo: Nel contenitore associato all'identificatore della
a una variabile variabile Aviene inserito il valore 9.
I £ Nel casoin cui il contenitore associato ad A contenga
A9 A : A d 9 | unprecedente valore, questo viene perso e sostituito
H dal nuovo valore
Assegnare a una Prima: Dopo: Nel contenitore identificato da B e corrispondente
variabile il valore di = = alla variabile B viene inserito il valore contenuto nel
un'altra variabile s : contenitore associato alla variabile A
A 49 A 4 9 | Inquestocaso anche Bassumeilvalore 9.
BeA Il contenitore associato ad A non perde dunque il suo
= - valore dipartenza
B J B H
Incrementare il valore | Prima: Dopo: £ calcolato il valore dell’espressione a destra della

di una variabile

A< A+l

0
P

L

-
=

freccia, leggendo il contenuto del contenitore
identificato da A e aumentandolo di una unita, per
poi inserire il risultato ottenuto nuovamente nel
contenitore della variabile 4. La variabile A perde
il vecchio valore che @ sostituito con quello nuovo

Madificare il valore di | Prima: Dopo: IL contenuto della variabile A & addizionato al contenuto
una variabile = =19 della variabile B e il risultato dell'espressione & inserito
i nel contenitore della variabile 4 (a sinistra della freccia).
A~ AsB A 0|4 La variabile A perde il vecchio valore che viene sostituito
& con quello nuovo, mentre (3 variabile B mantiene il suo
= = valore inalterato
B :I 9 B :I 9
Scambiare il valore tra | Prima: Dopo: Per poter scambiare il valore contenuto nelle variabili

due variabili

AUS— A
A8
B AUS

»

LLE

AUS

[~
0
n

>
=
“

EEL

o

[
o

-
o

A e B occorre utilizzare una variabile ausiliaria che
identifichiamo con AUS. In questo modo non si perde
nessun valore

4. Gli schemi di flusso

Per rappresentare graficamente un algoritmo si utilizzano
gli schemi di flusso, ottenendo una descrizione delle
azioni piu efficace e chiara, standard e senza ambiguita
Interpretative

Uno schema di flusso (o diagramma a blocchi o flow
chart) € una rappresentazione grafica di un
algoritmo realizzata mediante I’utilizzo di simboli, la
cui forma dipende dal tipo di azione che si vuole
descrivere, uniti da frecce che rappresentano il
flusso dell’esecuzione delle istruzioni che
compongono lI’algoritmo

4. Gli schemi di flusso

‘Tabella2 Principali simboli assaciati a ogni azione e loro significato
Tipo di istruzione I Significato
i : Blocco di azione:
Azions akalon esegue l'azione descritta all'interno del rettangolo

Blocco di controllo:

verifica la condizione e se il risultato & vero passa a eseguire
le istruzioni sul ramo corrispondente a vero, altrimenti passa
a esequire le istruzioni sul ramo corrispondente a falso

Controllo
(Condizionale)

Blocco di input dati:
chiede in ingresso all'utente un valore che verra
memorizzato in una variabile in memoria

Comunicazione

(Trasmissione)
Blocco di output dati:
_ fornisce in uscita all'utente un valore che verra visualizzato
avideo

Salto condizionato o incondizionato:

va a esequire l'istruzione indirizzata dal flusso delle frecce.
E rappresentato da una freccia che si innesta in un‘altra
freccia nel punto dell'algoritmo cui si deve saltare

Salto

Inizio algoritmo Blocco di Inizio algoritmo

Fine algoritmo Blocco di Fine algoritmo

4. Gli schemi di flusso

Gli schemi di composizione fondamentali

Gli schemi di composizione fondamentali (SCF)
sono schemi di flusso che rappresentano le
possibili situazioni che si possono incontrare nello
sviluppo di algoritmi

Essi si distinguono in:
«SCF di sequenza
*SCF di selezione
=SCF di ripetizione

4. Gli schemi di flusso

Lo SCF di sequenza ¢

Istruzioni di tipo azione che
vengono eseguite in

successione :
Azione 2

4. Gli schemi di flusso

l

Lo SCF di selezione 'ﬁ“—::16655;2‘;(;@;«5”_
Rappresenta la situazione azione
IN Cul: ' T
= S| Incontra un blocco o atiora
di controllo
= a seconda del l
risultato della VIF "~ FV
condizione che [
contiene, si decide se azi?“e azit]me

proseguire per una
strada o per un’altra

-

se... allora... altrimenti...

4. Gli schemi di flusso

Lo SCF di selezione permette di scegliere quali
azioni dell’algoritmo eseguire a seconda del
risultato fornitoci da una condizione, spostando il
flusso dell’esecuzione verso le azioni corrispondenti
al risultato Vero del test oppure verso le azioni
corrispondenti al risultato Falso del test

Piu SCF di selezione possono essere inseriti uno dentro
I'altro formando una serie di blocchi di controllo annidati

5. Equivalenza tra algoritmi

Uno degli obiettivi fondamentali della programmazione
consiste nel trovare 'algoritmo risolutore ottimale

Tuttavia, nella maggior parte dei casi, per un problema
esistono piu algoritmi risolutori equivalenti

Due o piu algoritmi si dicono equivalenti se, pur
usando metodi risolutori diversi, ricevuti gli stessi
input, forniscono in uscita gli stessi output

5. Equivalenza tra algoritmi

Analizziamo, per esempio, il seguente algoritmo nelle tre
versioni risolutive equivalenti

Determinare il valore piu grande tra tre valori numerici in ingresso al programma.

ANALISI
Dati in input ab,c
Dati in output il valore pit grande fra g, b, ¢

Relazione tral/0
Sea = beb = callorail valore pit grande e contenuto in a
altrimentiseb = ae b = callorail valore piu grande e contenutoin b
altrimentise c = aec = ballorail valore piu grande e contenuto in ¢

tra algoritmi

5. Equivalenza

l
A

/[

//[°

5. Equivalenza tra algoritmi

Gli operatori booleani

Possiamo ottenere lo stesso
risultato con meno blocchi di
controllo mediante l'utilizzo
degli operatori booleani
AND, OR, NOT

Le tavole di verita ci
aiutano a capirne |l
funzionamento

Vero Vero Vero
Vero Falso Falso
Falso | Vero Falso
Falso | Falso Falso

Vero Vero Vero
Vero Falso Vero
Falso | Vero Vero
Falso | Falso Falso

Vero

Falso

Falso

Vero

5. Equivalenza tra algoritmi

5. Equivalenza tra algoritmi

Introduzione di una
variabile ausiliaria

Introducendo la

variabile ausiliaria

max e possibile
semplificare le
condizioni contenute
nei blocchi di
controllo

